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Abstract 

To ensure a successful austenitizing heat treatment, the steel casting industry has used 

conservative practices. The long process times result in inefficient use of time and energy. 

Past research has justified the application of shorter process times, but industry has been 

unable to implement their findings because of control limitations. The problem is identifying 

when the load has reached temperature. This paper discusses the disconnect between the 

recommended heat treatment process strategy and the control strategy and proposes an 

improved control strategy. The firing rate or output signal from the controller is introduced 

as a novel approach to identify indirectly when the load has finished soaking. This work has 

demonstrated potential savings of 30% in process time and gas consumption with each load. 

Disclaimer 

This material is based upon work supported by the U.S. Department of Energy under Award 

No. DE-FC36-046014230. Any opinions, findings, or conclusions and recommendations 

expressed in this material are those of the authors and do not necessarily reflect the views of 

the Department of Energy. 
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1 Introduction 
The steel casting industry produces parts with complex geometries that are unattainable 

through other manufacturing processes. The industry utilizes the flexibility of a job shop 

setup to handle the wide variety of jobs ordered in small production quantities. Parts size can 

range from a few pounds to a few thousand pounds with relatively simple designs such as 

brackets or to intricate shapes such as valves. Additionally, the steel chemistry of each job 

can be modified to meet consumer needs such as preventing corrosion or minimizing 

material costs. 

Feat treatment is a critical step in the manufacturing process because it enhances material 

properties and enables the part to meet performance requirements. The process is inherently 

energy and time intensive since temperature gradients are used to drive heat into the castings 

to reach required temperatures. The part is soaked at this temperature for a specified time, 

and then cooled at prescribed rates to achieve the desired microstructure and properties. 

because heat treatment is critical to the final product, much effort has been expended to 

understand and improve the process. Research has been conducted to identify times and 

temperatures needed for sufficient heat treatment of various materials and section sizes 1 ~~. 

Advancements in furnace design have improved the steady state temperature uniformity of 

unloaded furnaces. Accurate simulations of heat treatment loads are possible with the 

improvements in computing technology3. 

Yet with this information, the steel casting industry and their customers continue to 

utilize conservative practices instead of implementing the results from research. Many 

facilities still employ rules such as ` 1-hour-per-inch' for soaking times2,4,s once the furnace 

reaches temperature or another empirical relationship based on the load's largest section size. 

The application of these rules results in longer than necessary process times and inefficient 

energy usage since they are designed to encompass any potential variability. Ample 

evidence strengthens the grounds for improving upon these conservative practices. 

Moreover, optimizing energy usage has become a topic of considerable scrutiny with the 

surge in natural gas costs and market uncertainties; yet, the industry still has been slow to 

implement practices that are more aggressive. No robust method exists to accurately know 

when soak time in austenitizing heat treatments has come to completion. Without an 
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improved method that is applicable industry-wide to replace the ` 1-hour-per-inch' rule of 
thumb, the practice will persist. 

Research has partially justified the removal of this rule from specifications with a 
recommendation of a shorter process strategy. The obstacle to implementing the shorter 
process strategy has been inadequate instrumentation in industry. Instrumentation is the 

combination of a control strategy that determines which variables to assess and the sensors 

that measure those variables. Research has generated detailed time-temperature process 

strategies for heat-treating of steel castings; however, industry uses control strategies that are 

associated to the controller's limitations and not the process requirements. Measurements 

from the sensors fit the need of the controller, but are unable to satisfy the process strategy. 

This paper addresses the issue of inadequate instrumentation by reviewing the process 

strategy for austenitizing temperature heat treatments of carbon and low alloy steel castings. 

Then, the control strategy is compared to the process strategy to demonstrate its failure to 

meet the requirements put forth by research, and finally a novel approach is proposed to align 

the two strategies. The approach outlined is applicable to other batch heating processes with 

slow responses. 
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2 Review of Heat Treatment Strategies 
2.1 Conserva fi ve Practices 

For many years, the steel casting industry has utilized conservative practices in heat-

treating in the austenite region. The rule of thumb was to heat the furnace to some 

temperature above 1400 F, and then maintain the furnace at this temperature for "1-hour-per-

inch" based on the largest cross section thickness in the load. The author has not identified 

the exact origin of this rule, but it may have arisen as a way to cope with poor equipment 

design in the past that lead to non-uniform heating4. Although its beginnings are not known 

exactly, past research has identified this practice as troublesome and has attempted to 

eliminate its usage. In 1958, Briggs6 conducted research with this purpose in mind. He 

stated that: 

"...after the information of this report is available to the purchasers of steel castings, the 1-
hour-per-inch rule will be discarded from specification..." 

The application of this conservative practice continued in spite of Briggs' work as noted 

by additional work in 1981 to eliminate the practice. Patterson investigated the mechanical 

properties of castings in shortened heat treatments. Based on his results, he concluded: 

". . .that the information contained in this report will be an aid to the operators of foundries in their 
efforts to ~ convince purchasers of steel castings that the 1-hour-per-inch rule is not metallurgically 
necessary." 

Although Patterson's report amply demonstrated that heat treatment times could be 

shortened without degradation of mechanical properties, the industry continued using its 

conservative practices as before. Voigts noted the continued usage of the `1-hour-per-inch' 

rule in his 2004 work to develop heat treatment qualification procedures. He documented 

that: 

"While most steel foundries use 1-hour-per-inch guidelines to establish proper heat treatment 
time, the practice of this rule varies between foundries." 

His work did not attempt to eliminate the ` 1-hour-per-inch' rule but rather focused on 

standardizing the practices currently in place to ensure quality. For instance, Voigts reported 
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that many foundries use in-house standards or requirements as specified by the customers, 

which can vary based on the available standards. For example, ISO 683 recommends a soak 

time of one half hour for austenitizing once the casting has reached the appropriate 

temperature; whereas, ASM 2759 1 c recommends soak times based on section thickness as 

shown in Table 1. The Steel Heat Treatment Handbook2 mentions the current usage of the 

` 1-hour-per-inch' , but can only suggest other empirical methods that are furnace and load 

specific as solutions to replace the rule of thumb. 

The purpose of these standards is to ensure that each load receives sufficient heat 

treatment. The methodology used to qualify a treatment is generally based on some 

correlation to section size. Although the focus is on time, temperature, and section size, a 

quality heat treatment requires more than that. A review of what is occurring in austenitizing 

heat treatments is appropriate to understand why these conservative rules are in place. 

Table 1 Soak time for annealing, normalizing, and austenitizing based on section size in ASM 2759 1c5. 
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2.2 Process Strategy 
The purpose of heat treatment is to modify the microstructure to obtain a wide variety of 

desired material properties without changing the chemical composition or shape. There are 
many types of heat treatments that heat into the austenite region as a precursor to subsequent 

processing such as austenitizing, homogenizing, normalizing, annealing, and the heating 

prior to quenching. For carbon and low alloy steels, the castings are heated above 1340 F to 
obtain a uniform austenite grain size without coarsening, to attain a uniform structure, and to 

relieve internal stresses1,14 

The change in material properties is possible because iron has different solid phase 

configurations. At high temperatures, it shifts from abody-centered cubic crystal (alpha 

ferrite) to aface-centered cubic crystal (gamma austenite) as shown in Figure 1. The process 

of shifting allows the solid to redistribute carbon and change its crystal size. Carbon interacts 

with iron by either dissolving into its crystal lattice or forming a hard, brittle compound 

called cementite or iron-carbide (Fe3C). The concentration difference between each phase 

has the ability to redistribute carbon. The solubility of carbon in cementite is 25%, austenite 

is 2%, and ferrite is 0.025% l . By controlling the location and size of ferrite and cementite, 

the mechanical properties can be changed. Pearlite is bands of alternating ferrite and 

cementite. 

Modifying the cooling rates from the austenite region alters the ferrite and cementite 

distribution. The key principle in the final microstructure is the rate of temperature change 

and its control on nucleation and grain growth 1 . Faster decreases in temperature generate 

more nucleation sites available for ferrite growth promoting finer microstructures and 

distributing the cementite more uniformly throughout the microstructure. Slower decreases 

in temperature promote ferrite grain growth and coarser microstructures. Thick layers of 

cementite are concentrated in locations surrounding the large ferrite crystals. Additionally, 

rapid temperature changes can trap the carbon in the ferrite phase to form martensite (body-

center tetragonal crystal) 9. 
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This paper will focus on the soaking portion of the process in identifying its completion 
in preparation for subsequent cooling. The process strategy centers around four 
considerations: heat soak delays, soaking temperature uniformity, austenite formation, and 
carbide diffusion l '4. The process strategy suggested by this research can be broken down into 
two distinct phases: process soak and process hold as shown in Figure 2. The thermocouple 

measurement shown represents a single casting's temperature. Process soak, not to be 

confused with soak mentioned previously, is the time required to bring the entire casting to a 

steady state in temperature. Heat transfer mechanisms determine its length. Process hold is 

the time needed to fully austenitize and diffuse carbides in the casting once at an equilibrium 

temperature. Phase transformations and diffusion mechanisms control its duration. 

2.2.1 Process Soak Time and Temperature 
The first considerations with the process strategy are related to the temperature of the 

load itself. Because of part geometry and load packing, delays in the time to reach the 

designated temperature are a reality of any heat treatment. The time required is a function of 

the heat transfer mechanisms, the current material state and properties, and the part geometry. 

Briggs6 documented time difference from heating between the surface and center of 1 ", 3", 

and 6" sections for various low alloy steels as shown in Figure 3. The time difference 

between the surface and center sections to reach temperature was less than 30 minutes for all 

experiments. Patterson measured the surface, quarter thickness, and centerline of a 5" low 

alloy steel block and found that individually heated blocks in a preheated furnace required 

about 72 minutes to reach equilibrium at 170o F. The delay for the casting center was about 

15 minutes. 

Aronov10 documented the soak time variability for various loading configurations and 
packing densities including the temperature difference between the load and furnace air as 
shown in Figure 4. Ivey factors in the time to reach equilibrium are the influences of packing 

density and load orientation. Hanquistll investigated the effect that surface finish, location in 
the furnace, and load size has on soak time and difference in temperature to the furnace air 

for 3", 5", and 8" carbon steel castings. He suggested that the temperature monitored inside 
the furnace may not be indicative of the castings' temperature. 
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voigts,l s' 16,1 ~ reported temperature variability in instrumented production loads in his 

studies. voigt developed a heat treatment procedure qualification to compare the many 

variables for a successful heat treatment. The variables in heat treatment can be simplified to 

four key components upon which the rest have some relation. Table 2 lists the critical HTPQ 

variables from his research. 

Table 2 Four key variables of heat treatment. 

All Heat Treatments 
■ .Alloy grade/composition 

Time-temperature profile during heat treatment 
e Maximum casting section size 
® Furnace loading at full load condition 

Load variability is not limited to heat treatment only. Styczynska20 in 1996 documented 

the effect that packing had on a carbonitriding process. Using statistical process control, he 

determined the extent of inadequate treatment for the center of the load. With this 

knowledge, the company then improved the furnace design. 

The influence of complex geometries and castings processed as batches not only 

influences the time to reach steady state but the temperature also. Every casting in the batch 

will have a different orientation to the heat source. Since the castings are heating non-

uniformly, the steady state could be a range of temperatures depending on the uniformity of 

heat sources surrounding the casting. No amount of additional time will significantly 

improve the uniformity of the temperature distribution once the equilibrium state is reached. 
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The extent of non-uniformity is dependent on loading orientation, the heat source location, 

and part geometry. There are limited opportunities to optimize loading configurations since 

production quantities are small with similar sequencing occurring infrequently. 

2.2.2 Austen ite Formation 
One of the main purposes of austenitizing heat treatment is to obtain sufficient austenite 

for hardening later in the cycle. Steps a-f in Figure 5 show the austenitizing process. As a 

critical temperature is reached, the ferrite (alpha) phase transforms into austenite starting at 

boundary areas. The transformation continues to grow and encompass all the ferrite and iron 

carbide. The transformation occurs rather quickly once above the critical temperature as 

shown in Figure 6. 

~`~ ~~rsr~~~~~ 
, ~ r~ ~1 

Figure 5 Transformation of a pearlitic structure to austenite when heating an unalloyed eutectoid steel of 
0.8 % C2. 

However, the time is dependent on the extent of heating above the critical temperature 

and the coarseness of the initial microstructure. Thin ferrite grain boundaries and larger 

surface area to volume ratios dissolve faster than blocky ferrite. Another key consideration 

is austenite grain growth. At high temperatures, the grains of austenite continue to grow. 

when these are cooled, the larger austenite sizes translate into larger 

ferrite/pearlite/martensite sizes. Patterson reported that no significant austenite grain growth 

occurred for low alloy steels held for 2.8 hours at 1900 F. 
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l~ figure 6 Effect of austenitizing temperature on the rate of austenite formation from pearlite in eutectoid 
steel2,13e 

2.2.3 Carbide Hor~nogen ization 
Another central purpose of heat treatment is to homogenize carbides that have become 

segregated. As the austenite grows (Figure 5), the iron carbide begins to diffuse into the 

austenite. This occurs because carbon has a higher solubility in austenite than in ferrite. 

Calculations by Brooks l have shown that homogenization of carbides over the entire length 

of a casting is infeasible, but isolated homogenization of carbides across individual dendrites 

is possible during the course of a normal heat treatment cycle. Times and temperatures for 

austenite transformation and localized carbide diffusion is shown in Figure 7 for a fine 

pearlitic steel ~'2. The curve on the left shows the beginning of the disappearance of pearlite, 

and the second curve shows the final disappearance of pearlite to 99.5% austenite. The third 

curve indicates the time and temperature to dissolve carbides, whereas the fourth curve is for 

the final disappearance of carbon concentration gradients. 

Patterson and Bates identified the time required for various grades of steels to complete 

both austenitization and localized carbide homogenization without degradation in mechanical 

properties. Table 3 summarizes their work. They noticed that the original microstructure 

plays a significant part in determining the time necessary for localized carbide 

homogenization. The fine microstructure of the manganese alloy required less than two 

minutes for carbide homogenization, whereas the other two coarse microstructure alloys took 
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much longer. The thickness of cementite and ferrite influences the time because finer 

microstructures have smaller distances for the carbides to diffuse. Localized homogenization 

in pearlite is faster than ferrite because the carbon in pearlite is more evenly distributed. 

When ferrite is present, the carbon from the surrounding cementite has to diffuse half the 

distance of the ferrite grain size. Large blocky ferrite requires longer time for carbon to 

diffuse. 
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Figure 7 An isothermal TTT diagram showing the effect of austenitizing temperature and time on the 
formation of austenite from fine pearlite. 

Table 3 Time required (minutes) versus temperature (°F) for complete austenitization of three alloys. 

Temperature 
(°F) 

Plain 
Carbon 

1.3 Mn- 
0.25 Mo 

2.4 Cr-
0.95 Mo 

1650 < 17 2 17-30 
1700 <17 <2 <17 
1800 2 <2 2 
1900 <2 <2 <2 

Furthermore, the extent of diffusion is dependent on the alloy in question and the ramp up 

duration. Voigts,l2 demonstrated that the extent of carbide diffusion is a function of time and 
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temperature, and that shorter times at higher temperatures can replace longer times at lower 

temperatures. The key factor in determining the extent of diffusion is soaking temperature. 

Their data suggests that increasing the temperature by 100 F cuts the hold time in half for 

carbon to diffuse the same distance. Section size also affects the carbide homogenization 

time because heavier section sizes tend to have coarser microstructures than thinner sections. 
The coarser microstructures have larger ferrite sizes. Past research suggests that larger 

castings, which heat up slowly, may be closer to full transformation on reaching the final 

austenitization temperature. 

Zo3 Control Strategy 
Based on the previous discussion, a basic understanding of what is occurring in the 

process can be determined by measuring time and temperature in the load. Current industry 

practices, however, employ a control strategy that is unrelated to the process strategy. The 

control strategy involves using thermocouples to measure the air enveloping the load. The 

temperature measured by the sensor may or may not be indicative of the load conditions. 

Comparing the temperature input to auser-defined set point controls the heat treatment 

operation. The controller's internal function (PID) then decides an appropriate output signal 

to control the heat input into the furnace. Once the set point temperature is reached, the 

controller then ensures it is maintained. The control strategy utilized by the industry is linked 

to how the controller responds to the furnace air temperature. Figure 8 shows a simple 

schematic of the furnace and the controller. 

Fuel Mixture 

Figure 8 Schematic of the heat treatment control system (TT- temperature transmitter and TC-
temperature controller). 
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In describing a heat treatment, the steel casting industry uses standard control 

terminology to describe what is occurring. Ramp is the time required by the controller to 

bring the control thermocouple to the set point temperature. ®nce ramp time is completed, 

the controller enters into its control soak phase as it maintains the input temperature equal to 

the set point. The use of ramp and soak in heat treatment provides no indication of the 

current load conditions; however, industry bases their rules of thumb on the control sensor's 

response. These rules are a natural result devised by industry to compensate for the 

shortcomings of the control strategy used. Figure 9 shows a typical control strategy for heat 

treat in the steel casting industry. Note that the load thermocouple from Figure 2 is included 

to demonstrate that process soak occurs in both the control ramp and control soak phases. 
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Figure 9Time-temperature profile showing the ramp and soak phases of the control strategy. 
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3 Process and Control Strategy Disconnect 
The problem with the control strategy employed is that the control thermocouple may not 

accurately indicate load conditions. Although ramp time is completed, the load is still 
increasing in temperature as part of its process soak phase. Since the time to complete 
process soak is unknown, industry specifies for its control strategy any time after ramp as 
soak. The times for soak is longer than necessary to account for the maximum amount of 
variability possible while still maintaining quality. Rules that work for one batch are then 
applied to all batches using a link such as largest section size. 

The reasoning behind the `1-hour-per-inch' rule is to ensure adequate time to complete 

each phase in the process strategy and compensate for any load time/temperature variability. 

The problem with the rule is that it is based on two assumptions dealing with ramp and 

section size. The first of which is that the completion of ramp is a key transition point that 

acts as an equalizer for loads of different size, weight, and density. Once ramp is completed 

loads that have the same section size should behave similarly thereafter. The second is that a 

linear correlation exists between time and section size. Once soak begins, loads with larger 

section sizes require more time than those of smaller cross sections. In order to eliminate its 

continued usage, it must be demonstrated that the control strategy upon which it is based has 
no correlation to the process strategy. 

Table 4 Experimental setups to investigate control and process strategy disconnect. 

Experiment A Experiment B 

Focus 
Effect of Control 

Thermocouple 
Position on Ramp 

Load Response After 
Ramp Completion 

# of Loads 1 22 
Current 

Measurement 
Strategy 

1 Air Control 
Thermocouple 

182 Load 
Thermocouples 
(2 - 6 per Load) 

Furnace 
Size 

1Ox10x3-ft Front- 
Loading Furnace 

From a 15 x 11 x 11-ft 
Car Bottom Furnace 

To a l Ox 10x2-ft 
Front-Loading Furnace 
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To validate the disconnect between the process and control strategy, two experiments 

were designed using production loads in industry. Time and temperature profiles were taken 

from instrumented loads in addition to their controller temperature readings. The focus of 

Experiment A was to investigate the effect of the control thermocouple position, and 

Experiment B was to investigate the response of the load once ramp was completed. 

3.1 Experiment A- F3amp Variability 
For Experiment A, the purpose was to determine the effect and extent that the position of 

the control thermocouple has on the temperature measured and the control ramp time. A 

control thermocouple with the ability to change positions was used to control the heat input 

for a production load. It was not intended to change the heat input during the process, but to 

measure the variability in temperature at specific positions from the load. Large changes in 

temperature would indicate that ramp time is not linked to load conditions. The control 

thermocouple is referred to as the `extendable thermocouple' in this portion of the paper. 

3.1.1 Methodology 
In this experiment, a 1 Ox 10x3-ft front-loading furnace with a 12-ton load (including 

trays) was heated using normal operating procedures. The control strategy for this load was a 

controlled ramp of 1000 °F/hr in order to prevent thermal stress and cracking. Holding time 

began when the control thermocouples reached 1750 °F. The control thermocouple was 

located near the center of the load suspended from the ceiling. The furnace also had three 

other air thermocouples located in the sides and back. For this trial, load thermocouples were 

placed in the center of L-shaped blocks (8x8x4-in with a 4" cube cutout), which were located 

in the lower corners and center of the load. A temperature measurement from the casting 

surface was taken near the extendable thermocouple. 

The procedure for Experiment B was to move the extendable control thermocouple 

during ramp up when the burners were firing 100% for a load. The thermocouple was moved 

from the load surface (0") to the following heights: 1.5", 4.375", 7", 9.625", and 12.25". 

Then it was lowered again to the load surface, and the process was repeated. The 

thermocouple was moved at intervals of 2 minutes initially and then 4 minutes during later 

stages to ensure equilibration. 
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3.1.2 Results and Discussion 
Figure 10 shows the air temperature measurements in the furnace for Experiment A. The 

four air temperature measurements are for the three locations surrounding the load and for 

the control thermocouple. The temperature readings of the other three thermocouples are 

independent of those from the control thermocouple until around 300 minutes. Thereafter, 

the control thermocouple influences the others because once the set point temperature is met 

or exceeded the controller adjusts the firing rate accordingly and the air temperature changes. 

An analysis of the controller thermocouple was performed by examining the correlation of 

temperature measured to its height from the load surface during 180 to 270 minutes. Cubic 

polynomials with a minimum Rsquare value of 0.97 were fit to each thermocouple height as 

shown in Figure f 1. The temperature measurement of the adjacent load surface is included 

to verify the cubic fit. The curves follow the same trend indicating that awell-defined 

temperature gradient exists at any time during ramp. 
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Figure 10 Furnace air temperatures enveloping a load's two sides and back of a front loaded furnace for 
Experiment A. 
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Figure 11 Correlation of height to temperature reading for the extendable control thermocouple in 
Experiment A. Cubic lines are fitted to the data points. The `lock top' line is the surface readings from 
a casting in the vicinity° 

With this information, generalizations can be made about the effect that location (height) 

of the control thermocouple has on the length of ramp time and the difference in temperature 

from the load surface that specific heights will have at any time during ramp. These effects 

are tabulated in Table 5. Ramp completion time is the estimated time for the controller 

thermocouple to have registered 1750 °F if the controller thermocouple had been left at that 

height for the process. The average temperature difference of the air is the temperature 

difference between the load surface and the average temperature (during time 170-290 

minutes) at a particular height. For example, + 184 °F at 12.25 inches means that this 

particular height was on average 184 °F hotter than the load surface at any point in time. 

~Oth the temperature difference from the load surface and the length of ramp time were 

found to be linear in relationship for the parameters measured. 
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Table 5 Experiment A: Effect that thermocouple height has on the total time to complete ramp up 
because of differences in air temperature at each height. The difference in temperature between the load 
surface and each measured height from 170 to 290 minutes was averaged and listed here. 

Heaght from 
Load Surface 

(ice) 

Calculated Ramp 
Completion Time 

(rnin) 

Average Air 
Temperature 

Difference (°~) 
12.3 290 + 184 
9.6 298 +141 
7.0 307 +108 
4.4 315 +79 
1.7 323 +49 
0.0 330 0 

The interesting insight that this experiment reveals is that the position of the 

thermocouple to the load can influence the length of ramp. In this case, ramp would be 

lengthened an additional 40 minutes if the location of the control thermocouple had been 

moved from 12.25 inches above the load to the load surface. The time to complete ramp is 

not only affected by the load's size, weight, and density, but it is strongly dependent on the 

placement of the sensor to the load. .A load that is accidentally placed near or touching the 

control thermocouple will have a different ramp time than one that is far away. The 

placement of the sensor is crucial to when the completion of ramp occurs because 

temperature changes depending on location to the burners and the load. The assumption that 

ramp completion acts as a unifier of loads is not valid. Once ramp is completed, it cannot be 

assumed that- loads with the same section size will behave similarly thereafter. 

3.2 Experiment B- Ramp and Soak Difference 
To understand the response of the load once ramp is completed, time-temperature profiles 

were collected from four industrial partners for twenty-two instrumented heat treatment 

loads. The purpose of this experiment was to examine the variability in soak times after 

ramp completion for various section sizes in a load. Currently, conservative practices are 

designed to encompass all possible variation in temperature and time to reach that 

temperature; however, the rule assumes a relationship to section size. By examining the 

maximum amount of soak time needed for various section sizes from sample instrumented 

loads, the justification for these rules can be refuted. 
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3.2.1 Methodology 

The data was collected from instrumented steel castings with various section sizes less 

than 8". In all, 174 thermocouple readings were compared to the response of their load 

control thermocouple. Once ramp time was completed, the time delays or times to reach 

specific temperatures above 1400 F were found. The data was provided by partners that 

employed unique heat treat procedures even though many of their alloys were similar. Each 

thermocouple measurement was normalized to the set point temperature of its load in order to 

compare loads that had set point temperatures ranging from 1625 to 1850 F. Furnace sizes 

ranged from a 15x 11 x 11-ft car bottom furnace to a 10x 10x2-ft front-loading furnace. The 

normalized temperatures were compared to time once ramp was completed. 

3.2.2 Results and Discussion 

The results are displayed in Figure 12. A time of zero indicates that the controller has 

reached the set point temperature, and ramp is completed. The interesting trend in the data is 

that 96°0 (168 out of 174 possible) of the thermocouple readings took two hours or less to 

reach at least 92°jo of the set point temperature. Those that took more than two hours 

occurred with loads that were packed denser than usual or placed in a furnace inadequately 

maintained. Furthermore, 85% (148 out of 174 possible) required one hour or less to reach 

92% of the set point temperature after ramp has completed. The value of 92°Io was selected 

because this corresponds to a temperature of at least 1500 F for all measurements, which 

meets the minimum requirements for austenitization and carbide diffusion. The time 

required to increase the temperature thereafter dramatically increases signifying that the 

temperature is approaching equilibrium. No identifiable patterns were identified between 

section size and time to reach a percentage of the set point temperature as the `hour-per-inch 9

rule uses. The variation in the data is a result of variables such as packing density, load size, 

and set point temperature. This suggests that the `hour-per-inch' rule is too conservative in 

order to account for the other factors, or that four hours fora 4-inch section is longer than 

necessary for a qualified heat-treat load. 

To confirm that the control strategy is too conservative, the time data in Figure 12 was 

normalized with the time designated by the `hour-per-inch' rule for each section size. For 

example, the soak time for all 2" data was normalized over 2 hours or 120 minutes, and 3 

hours for the 3" section size. Similar procedures were done for the others. The normalized 
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temperature and normalized time data were compiled and tabulated as percentages of the 

total measurements that were less than fractions (25%, 50%, 75%, 100%, 150%, and 200%} 

of the time specified by the hour-per-inch rule in Table 6. 

90% 95% 

of Setpoi nt Temperature 

Figure 12 Instrumented load data comparing the time delay after completion of ramp to the % of the set 
point temperature. 

Table 6 Percentage of trials which achieve a % of the set point temperature in a given fraction of the time 
prescribed by the hr/inch rule. 

of Set 
Point Temp 

## of 
Readings 

Fraction of Hr/inch Rule Used 
25 % 50 % 75 % 100 % 150 % 200 

~5% 174 93% 97% 97% 98% 99% 99% 
90% 173 SS% 95% 97% 98% 99% 100% 
92% 173 82% 94% 97% 9$% 98% 99% 

95% 167 70% 91 % 96% 97% 9$% 98% 
100 % 79 41 % 62 % 78 % 81 % 89 % 95 
105% 2S 46% 57% 68% 75% 79% 79% 

* Temperature reading is equal or greater than 1500 F in each load. 

The data exhibits the trend that as each thermocouple approaches the set point 

temperature, the fraction of the ` 1-hour-per-inch' rule used decreases along with the number 
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of readings that reach that point. Specifically, only 79 out of 174 readings (45%) reached 

100% of the set point temperature. Of those that did reach the set point temperature, only 

81 % were able to reach that temperature in less than the full time specified by the ` 1-hour-

per-inch' rule. This suggests that it is infeasible to expect a load to actually reach the set 

point temperature. It would be more realistic for industry to expect the load to reach 

temperatures of 95% of the set point temperature, where 167 out of 174 readings (96%) did 

so. Using this expectation, 91 % of the readings need 1/2 of the time specified. 

®f interest to heat treat supervisors is determining if the load reached a sufficient 

temperature for austenitizing. The results show that 94% (162 out of 173 readings) required 

less than 50% of the soak time prescribed by the `1-hour-per-inch' rule to reach a minimum 

of 92% of the set point temperature. The data tabulated for trials that achieved 92% of the 

set point temperature was further separated by section size to investigate their contributions. 

Percentages of the total number of readings were found for fractions of the ` 1-hour-per-inch' 

rule as done previously. Similar separations could be done for other percentages of the set 

point temperature, but it is expected that similar results would be found. In general, 

measurements that used percentages greater than 50% of the `1-hour-per-inch' rule were 

limited to section sizes of 1" and 2" as seen in Table 7. The data suggests that there is no 

linear relationship in load soak time to section size as the standard suggests. The load 

temperature is function of many factors of which section size cannot accurately portray. 

Based on this result, the ` 1-hour-per-inch' rule might be an acceptable method to determine 

hold time for only very small section sizes. 

Table 7 Percentage of trials which achieve 92% of the set point temperature in a given fraction of the 
time prescribed by the hr/inch rule. 

Section Size 
(inch) 

# of 
Readings 

fraction of l~Ir/inch Rule ~Jsed 
25% 50% 75% 10000 150% 200% 

1 35 d3 °~0 83 % 86 °~o $9 °~0 91 % 97 0~0 
2 34 : : :79 0~0 91 % 97 % 97 % 97 % 97 % 
3 36 97% 100% 100% 100% 100% 100% 
4 33 88% 94% 100% 100% 100% 100% 
5 19 74 °~0 100% 100% 100% 100% 100% 
8 13 100% 100% 100% 100% 100% 100% 
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Thus far the analysis has used normalized temperatures to enable comparison of loads 

that underwent varying heat treatment procedures. The purpose of a heat treatment is not to 

reach a certain percentage of the set point temperature but to ensure a minimum temperature 

is met. For this reason, many procedures call for higher than necessary temperatures just to 

ensure that the temperature requirements are met. Suppose that the criterion for this analysis 

was to increase the load temperature to 1500 F. The results from the data are presented in 

Table ~. Slights differences in the percentages to reach fractions of the ` 1-hour-per-inch' 

exist, but in general the trend is the same as that given in Table 7. The inclusion of this 

information may seem redundant; however, by using temperature instead of normalized 

temperature, the analysis can examine the effect that set point temperature has on soak time 

to 1500 F. Table 9 demonstrates that set point temperature has a significant impact on the 

soak time to reach 1500 F. As expected, loads with the lower set point temperature are more 

prone to use higher fractions of the `1-hour-per-inch' rule. It is probable that many 

temperature readings were above 1500 F before the controller reached the set point 

temperature. 

Table ~ Percentage of trials which achieve 1500 F in a given fraction of the time prescribed by the hr/inch 
rule° 

Section Size 
(inch) 

# of 
Readings 

Fraction of ~Ir/inch Rule Used 
25 % 50 % 75 % 100 % 150 % 200 % 

1 35 71 °~0 77 % 86 °~0 89 °~0 91 °~0 97 
2 34 94 °~0 94 % 97 ~Io 97 % 97 % 97 % 
3 36 94 % 100% 100% 100% 100% 100% 
4 33 91 °~0 94% 100% 100% 100% 100% 
5 19 84 °Jo 100% 100% 100% 100% 100% 
8 13 100% 100% 100% 100% 100% 100% 

Table 9 Percentage of trials which achieve 1500 F in a given fraction of the time prescribed by the hr/inch 
rule and separated by the set point temperature for the load to which the reading belongs. 

Set point 
Temp (F) 

# of 
Readings 

Fraction of l~r/inch Rule Used. 
25 % 50 % 75 % 100 % 150 % 200 % 

1600-1700 65 63:°0 _ . 80 % 91 % 92 °~0 95% 95% 
1700-1800 53 100% 100% 100% 100°Io 100°Io 100°Io 
1800-1900 52 100% 100% 100% 100% 100% 100% 
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3. ~ Sur~r~a~y 
The two experiments demonstrated that the assumptions for the control strategy are not 

valid. Ramp time is a function of the location of the load and burners to the control 

thermocouple. With ramp time being variable, the soak time assigned by the control strategy 

must account for it. The ` 1-hour-per-inch' rule must have a safety factor that encompasses 

the possibility that the control thermocouple reaches the set point temperature in a matter of 

minutes whereas the load could take hours. Industry has supposed that ramp time acts as 

equalizer for similar section size, when the data suggests that ramp time is an equalizer for all 

loads with section sizes less than 8". The majority required two hours or less to approach 

their steady state temperature, which is independent of section size. Industry cannot assume 

that the load will reach the set point temperature and that a linear relationship exists between 

section size and soak time needed. 



www.manaraa.com

25 

4 Linking the Disconnect 
A disconnect exists between the process strategy and the control strategy. The process 

strategy has two distinct phases: process soak and process hold. Process soak is the time 

required to bring the entire load to a steady state in temperature. Process hold is the time 

needed to satisfy chemistry distribution and microstructure requirements. The control 

strategy also has two phases: control ramp and control soak. Control ramp is the time 

required by the controller to bring the control thermocouple to the set point temperature. 

Control soak is the time the control thermocouple is maintained equal to the set point 

temperature. The process strategy requires knowledge of load conditions, whereas the 

control strategy is dependent on a relationship between a sensor and a heat input. The 

inability of the sensor to portray load conditions adequately is the cause of the disconnect; in 

fact, load conditions are oftentimes completely unknown. When ramp time ends for the 

control strategy, the process strategy is still in its soak phase as the load is still increasing in 

temperature. IJong control soak times are assigned as a safety factor because the time for the 

load to reach a steady state temperature is unknown. The control strategy must be redefined 

to portray the process strategy if any production improvements are to be made. 

4.1 Proposed Strategy to Link 
The first task in improving heat treatment productivity and energy efficiency is to define 

clearly the function of the instrumentation. Instead of basing the control strategy on the 

sensors available as is done currently, the improved control strategy should specify its 

function based on the process strategy. The fundamental requirement for the process strategy 

is to identify when the load has finished soak. When comparing the two strategies, there are 

overlaps between their key phases. A possible improvement to the control strategy would be 

to blend them together as shown in Figure 13. 

The improved control strategy will now contain the phases of control ramp, control soak, 

and control hold. Just as it is used now, control ramp will be completed once the control 

input has reached equilibrium with the set point value. The improvement will be measuring 

control soak. Control soak will be completed when the coldest location in the batch has 

reached a steady state. This would correspond to completion of process soak mentioned 

previously. The idea of coldest location is portrayed in the figure with multiple load 
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thermocouple readings. Control hold, which relates to process hold, will be a decision 

variable based on the time needed for austenitization and homogenization. The purpose of 

defining the control strategy this way is to provide measurable phases during the course of a 

heat treatment. The key to this strategy is to identify correctly the transitions between 

phases. Currently, the soak to hold transition is the only phase that cannot be quantitatively 

measured. 
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Figure 13 The improved control strategy showing the key phases of ramp, soak, and hold. Ramp is 
completed when the controller reaches temperature. Soak ends when the coldest load temperature 
reaches steady state. 

4.2 Review on the Improved Control Strategy 
No research has been found that focused specifically on control strategies for the heat 

treatment of steel casting production loads. As indicated. before, detailed requirements for 

the process strategy have been developed, but the implementation of these ideas into the 

production batch environment has found little discussion. Instead, research has briefly 

mentioned possible solutions as a side note to the detailed process strategies. Patterson 

suggested that a thermocouple should be embedded in the center of the thickest section of a 

block or casting to account for variable heating rates within a furnace and the associated lag 
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time in the load. They concluded that austenitization treatment times should be measured 

from this location and not the exterior enveloping air. 

Embedding a thermocouple in a casting would provide information on soak, but its 

practice has found limited application for many reasons. The task of loading the embedded 

thermocouple into the furnace, then replacing it for every load is labor intensive. Special 

care must be taken not to damage the wiring. Once the embedded thermocouple is placed 

properly with a load, the information it provides can only be used as an estimate. There is 

always the possibility that the temperature measured is not indicative of the conditions 

throughout the load. Another location might take longer to reach equilibrium or have a 

colder temperature. 

The obstacle to correctly identifying the completion of soak is unknown variability in 

temperature and time. Heat treatment is a variable process in that temperatures change with 

time and are spatially dependent. Since uniformity is non-existent within the load, 

confidence in the ability of a sensor to describe load conditions is very low. The placement 

of multiple sensors would strengthen confidence; however, the addition of more 

thermocouples in the load is impractical. Because of the difficulty in setting up 

measurements, many foundries forego the direct measurements. what industry really needs 

is the ability to measure the entire load's temperature. 

Industry understands the necessity of understanding the time-temperature profile for the 

entire load. Research has taken on the task of devising models that use heat transfer 

equations, thermophysical properties of the environment, and the properties of the steel parts 

to predict it. In 1994, Aronov~0 suggested that there was no reliable method to accurately 

predict heat up and soak times for heat-treating cycles that takes into account variations in 

furnace design, load arrangement and product mix. He then designed a mathematical model 

to predict soak times for simple geometries and loading practices. Although the solutions he 

found were still conservative because proper knowledge of the mechanism of heat transfer 

through the system's furnace and load were unknown, the results it provided were less than 

that the soak time using the `1-hour-per-inch' rule. He applied the model to six scenario 

loads and compared them to their assigned total soak time based on the `1-hour-per-inch' rule 

as shown in Table 10. Aronov 1 ° found that the thermal soak and metallurgical soak for 

whole load of 6 tests was less than the holding time needecl by conservative rules. 
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Table 10 Thermal soak time data comparing conservative rule andl modello. 

Test # ~,~a~ Total Soak Time 
Assigned (min) 

Thermal Soak Time 
from Model (min)* 

1 Disks 50 10 
2 'Trunnions 120 73 
3 Chipper Blades 60 17 
4 dolts 90 34 
5 Shafts 90 83 
6 Pins 330* 14-

`Includes time for carburizing 

Since then, work at the Worcester Polytechnic Institute has continued to develop a loaded 

furnace temperature modeling and analysis program. In 2000, IJu ~ s reported that they 

developed a model using very complex sets of heat transfer equations to solve problems for a 

single simple part in a furnace. ~y 2003, this model had been extended (Kang) to a computer 

system called Computerized Heat Treating Planning System for Batch Furnace (CHT-bf)19. 

The system optimizes thermal schedules and load patterns in batch processes and has the 

ability to work with random packing and arbitrary shapes unlike other systems developed. 

These models, which have become more accurate as computing technology has 

advanced, face serious obstacles for widespread implementation in the steel casting industry. 

To setup the model, detailed information is needed concerning the furnace and the load. The 

industry in general knows very little about the process conditions of their furnace let alone its 

heating patterns. The accuracy of the model is only as good as the data entered into it. 

Secondly, the industry functions as a job shop with very complex geometries. Feat treat 

batches are assembled with parts that may not be repeated for months. The effort to develop 

models to simulate the load configuration that occurs infrequently is not justified. 

Essentially, the industry needs evidence from production loads to confirm the models, but 

few loads are produced consistently to validate them. What the industry needs is a control 

strategy that uses real-time measurements on the load conditions to determine the completion 

of soak. 
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4.3 Temperature and Energy Correlation 
Measuring temperature is a difficult method to determine load conditions because it is 

spatially dependent and provides only sample data. Temperatures ale variable within the 

load, and the number of sensors used to capture this information is inadequate. Abetter 

methodology would be to identify some way to measure the overall system to indirectly 

measure temperature. Examining the fundamentals of temperature might give additional 

insight, 

Temperature is a measure of the average kinetic energy of molecules. It can be 

considered an energy density or an amount of kinetic energy contained by a mass of 

molecules in a system. The relationship that temperature has to energy is expressed by the 

following equation. 

__ 1 ~ a U ~ C~ 
~z aT ~ ~v 

(~) 

Where C,, is heat capacity at constant volume (kJ/(kg K)). T is temperature (K). U is the 

internal energy in a system (kJ). The m is the mass in the system (kg). It can be assumed 

that the heat capacity at constant pressure and volume is equal for a solid. The equation can 

be solved io the following. 

dU = nzCp~T~dT (2) 

The equation shows that changes in internal energy results in changes in temperature 

based on a function of mass and the material's ability to store energy. The objective is to 

identify when soak time is completed or the load temperature is no longer changing. Of 

interest is when the rate of temperature change is approaching zero. The equation can be 

rewritten as the following. 

dU _ inCp~T~dT ~ ~ 
clt dt 

(3) 

Measuring the rate of energy change directly in the load is more difficult than measuring 

the rate of temperature change; however, if the furnace is viewed as a system, the energy 

input provided by the burners or the electric coils can be measured. The energy input into the 
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load has a direct relationship to how the temperature or energy density is changing in the 

load. The load soaks up the heat energy and stores it, which increases the temperature of the 

load. The rate of energy into the system must equal the rate of energy stored by the 

load/furnace plus the rate of energy out as shown in equation (4). Notice that the rate of 

energy stored is equivalent to rate of internal energy change. 

. ~v s~~sten 
~in — ~otrr + E.sr — E ncrr + ~~ (4) 

The Est parameter depends on the rate of energy (i.e. temperature changes and phase 

changes) being stored by the load, air enveloping the load, and the furnace. When these have 

reached zero such that their temperatures are not changing without any phase changes, soak 

time has reached completion. When this occurs, the energy in will be equal to the energy 

out. Assuming that the energy out is constant, the energy in should be at steady state as 

shown in Figure 14-. By measuring the energy introduced into the load, we can indirectly 

measure when the temperature is no longer changing in the load. 

-- E i n 
mti s» :rw 

E o l.,l t 

°~ E st 

dime 
Figure 14 Example of expected energy rate changes. 
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4e4 Experiment C- Measuring Input Energy 
An experiment was set up to tabulate energy usage with gas flow in a heat treatment 

production load. The experiment will be referred to as Experiment C to distinguish it from 

the others. For Experiment C, a trial was conducted to measure the energy usage for an 

annealing process with controlled heating and cooling. The 32x22x 17-ft car bottom furnace 

with 68-ton load was heated using normal operating procedures. The furnace was divided 

into three control zones with controllers operating the burners in each respective zone. The 

control strategy for this annealing load was a controlled ramp of 100 °F/hr for 12 hours to 

1650 °F and holding for 18 hours. Load thermocouples were placed in the center and surface 

of 15" (cube) blocks placed in the corners and center of the load. Figure 15 gives a sample of 

the temperature profile for this load. 

Energy consumption was analyzed by identifying transitions in operations for the total 

gas usage, gas flow rate, and burner-firing rate, and then correlating them to transitions 

indicated by thermocouples. Figure 16 shows the rate of gas usage for the annealing process 

and the total gas usage. The total gas usage is equivalent to 409,500 ft3. Three key times are 

identified in the graph: end ramp, end soak, and end hold. The gas consumed during ramp is 

used to heat the air to the set point temperature and partially heat the load. During control 

soak, the air is maintained at the set point temperature and the load temperature is increased 

until equilibrium is reached. The gas consumed during control hold is used to maintain the 

temperature of air and load. Table 11 lists the gas consumed during each phase of the heat-

treat cycle and the percentage of the total gas consumed. Because this is an annealing 

process, the temperature of the load is decreased slowly over a period of time, which is 

designated as `Cool' . The operation continues to consume gas because the furnace has 

energy losses during this time that decrease the air temperature faster than desired for the 

process. The natural gas used during cooling, however, is a small amount when compared to 

the other treatment sequences, hence the leveling off at the end for the total gas consumed in 

Figure 16. 
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Figure 15 Experiment Ctime-temperature profile for the air thermocouple controller and a 15-in block 
in the center of the load in Zone 2 for an annealing process. 

Figure 16 Experiment C, the gas usage rate with the total gas usedl during an annealing process with key 
transition points indicated. The final total gas used is equal to 409,500 ft3, and the maximum flow rate is 
280 ft3. 
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Table 11 Gas consumed for various stages of heating cycle displayed in Figure 16. 

Process Sequence Time Period 
(min) % of Time Gas Consumed 

ft3( ) 
% of Gas 

Control Ramp 0 - 771 29% 156,775 38% 
Control Soak 771 -1200 16% 96,385 24% 
Control Hold 1200 - 1800 23% 116,585 29% 

Cool 1800 — 2628 32% 39,755 10°0 

Comparing the data to the expected energy input, output, and storage model, a similar 

trend is seen. A decrease in the gas flow rate, which corresponds to the energy input rate, 

occurs after the completion of ramp. As the furnace/load reaches a steady state temperature, 

the gas flowrate levels off accordingly. From the data, soak ends at about 1200 minutes. 

Measurements from the instrumented load registered temperature increases after the end of 

soak to less than 10 F. The load temperature can be considered at steady state thus validating 

the claim that the equilibrium energy input corresponds to the end of soak. 

Referring back to Section 2.2, the process strategy suggests that shorter times will suffice 

if the load is known to be at temperature. Using a `what-if' scenario with the data collected, 

the potential savings in process time and energy consumption can be found. Assuming the 

load has minimal deviation from the set point temperature, one hour at temperature can 

theoretically be prescribed to the load with a sufficient safety factor. Control hold time is 

now reduced from 600 minutes to 60 minutes, and energy consumption is reduced from 

116,585 to 11,678 ft3. The overall potential savings are given in Table 12. 

Table 12 Potential savings in time and energy by applying the improved control strategy proposed. 

®riginai 
Process 

Ne~v 
Process 

Savings 
value Percent 

Total Time (min) 2628 2089 539 20.5% 
Gas Consumed (ft3) 409,500 304,593 104,907 25.6% 

Another piece of valuable information can be gathered by tracking input energy. 

Measuring the energy reveals the efficiency of the operation to deliver heat to the load. The 

most troubling trend exhibited from Table 11 and Figure 16 is that 29% of the total gas 

consumed was during hold; this is a considerable amount of gas just to maintain load 
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temperature. 1~ny energy input into the system during hold is not absorbed by the load, but 

lost from the furnace. The 200 ft3/min or 205,400 BTU/min (1 ft~ = 1,027 BTU) were lost 

through wall losses, holes, flues, etc. The problem is that the gas rate during hold is 71 °Io of 

the burners' maximum capacity of 280 ft~/min, where an efficiency of 40-50% would be 

expected for a furnace of this size. This inefficiency translates into high gas consumption 

and subsequent cost. 

Table 13 Experiment C, percentage of maximum flow rate used during holding period from Figure 16. 

a R G s ate 
has Flow 

~ (ft /min) 
% of Max 

Flow 
Pilot Fight 18 6% 

Max Capacity (100%) 280 100% 
Hold 200 71 °~o 

4.5 Correlate Input Energy and Firing Rate 
In Experiment C, a simple correlation was observed that could provide the industry with 

the same information as the gas flow equipment. This information is readily available to the 

industry for data collection and related directly to the controller. The controller controls the 

temperature by adjusting the flow rates of the fuel/air inputs. In many systems, this is called 

the burner-firing rate. There is a direct correlation between the burner firing rate control 

signal and the gas flow rate based on each valves' flow characteristics. A reasonable 

assumption is that the relationship is linear, as happened to be the case for Experiment C, 

which is shown in Figure ] 7. 
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Figure 17 Relationship between firing rate and gas rate for the data collected for Experiment C. 

The implications of this relationship is that once the flow rate has been correlated to 

firing rate, measurements of the firing rate can be used to track the efficiency of the process, 

estimate heating costs, and identify the end of soaking. Collecting this data should be simple 

since an electronic signal is used to transfer the valve open percentage to the controller. 

Even without the correlation to gas consumption, valuable information regarding how the 

load responds to the heat treatment can be seen just from the controller response. 
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5 Discussion Combined Strategy 
5.1 Case Study- Fir6ng Rate 

Measuring the energy input or the output signal from the controller can serve as an 

indirect way to determine that Toad has ended its soak cycle. The strategy used to analyze the 

gas flow rate is applicable assuming that a linear relationship exists. To examine the 

potential method, a typical time temperature profile was provided from an industrial partner 

for a production load. Properties of the load and furnace were not provided, but they are 

unnecessary for the purposes of this example. In Figure 18, the lines represent individual 

thermocouple readings including one that serves as a control thermocouple. Additionally, 

another line is plotted that represents the output signal from the controller, oftentimes called 

firing rate by industry. As the furnace is heating up, the difference between control 

thermocouple and the set point temperature causes the controller to generate an output. The 

output signal directs heat input into the furnace. 
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Figure 18 Time-temperature profile for a load that includes the normalized firing rate and the set point 
temperature. Temperature is in Fahrenheit. 
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Analyzing the firing rate can provide information on ramp, soak, and hold. Examining 

the ramp phase, the firing rate increases then plateaus. The cause for the increase and 

subsequent plateau is from a linear ramp strategy that was used to heat up the load. The set 

point temperature was slowly increased until a final value. The firing rate signal maintained 

the linear increase in furnace temperature, which resulted in the firing rate increasing linearly 

itself until it reached its maximum. Thereafter, the heat input could not supply sufficient 

energy to keep the furnace temperature heating linearly. At this point, the burners operate 

fully at 100°~o just like an uncontrolled ramp. 

Once the furnace air temperature reaches the set point temperature, the ramp phase is 

finished. The controller's function now is to maintain the air temperature by adjusting the 

firing rate. Although the controller temperature is at steady state, the load is still increasing 

in temperature as it soaks up energy. This is reflected by the firing rate, which doesn't drop 

down instantly to an equilibrium value. The firing rate slowly decreases over time to a 

steady state value around which it oscillates. The time required to reach that point is directly 

linked to the load reaching its steady state temperature. Once reached, soak time has ended, 

and hold time begins. 

At this stage, the firing rate has balanced the energy input to energy losses. The firing 

rate can be used to understand the fuel efficiency of the operation and the total amount of 

energy used. Once at the steady state, a high firing rate value indicates low furnace 

efficiency meaning that a significant amount of energy is lost. Increasing the energy 

efficiency will result in lower firing rate values at equilibrium. The other correlation is that 

the total area under the firing rate curve corresponds to the total energy used during the 

process. By separating the area into those portions that pertain to ramp, soak, and hold, the 

percentage of energy used by each can be determined. 

5.2 Firing Rate Analys6s 
The data provided in Figure 18 was analyzed to determine the amount of time and 

percentage of energy used. Additionally, the time and energy used were found if the 

improved control strategy had been implemented in a `what-if' scenario and listed as New 

Total. For this example, it is assumed that 60 minutes are needed for hold time as a default 

value. During the hold cycle, the load had a maximum temperature range of 1706 to 1771 
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°F. The results are listed in Table 14. The improved strategy is broken down into ramp, 

soak, and hold to demonstrate the contribution each phase has to the time and energy used. 

Note that the values for ramp and soak would be equal under the old strategy to the new. All 

savings in time and energy are because hold time has been reduced. 

Table 14 Potential time and energy savings by using firing rate to identify soak. 

Process 
Sequence 

Time Period 
(min) 

% of Data 
Process Time 

Gas Volume 
Used (cuft) 

% of Data 
Energy 

Data Total 0-527 100 % 8055 100 % 
Nevv Total 0-360 68% 6388 79% 

Ramp 0-136 26% 3123 39% 
Soak 136-298 31 % 2666 33% 
Hold 298-360 11 °Io 599 8% 

According to the improved control strategy, 298 minutes from the start of treatment were 

needed before the burners approached their equilibrium-firing rate of 36%. At this time, the 

load temperature has reached equilibrium, and the load is not soaking up energy. The 

improved control strategy suggests that the total process time for this particular load could be 

reduced to 68% of the actual process time, and energy consumption would be 79°Io. 

Although process time and energy use savings will vary between loads, furnaces, and 

companies, the data is indicative of the potential that is available with the elimination of the 

conservative practice. The key is identifying when the load is no longer soaking up energy 

and increasing in temperature. 

5.3 Etfect on Production 
Implementing the improved control strategy to all heat treatment processes at a facility 

will lead to increased productivity and efficient usage of energy. An estimate of the yearly 

savings in production is possible from the data analyzed thus far if we assume that the firing 

rate analyzed in this section characterizes the average production in this furnace. Assuming 

the furnace operates 24 hours a day 7 days a week for 50 weeks, the company would heat-

treat the following number of loads as shown in Table 15. Additionally, the approximate 

number of days to process 900 loads is given. 
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Table 15 estimated number of loads processed in heat treatment for one furnace after one year and 
number of days to heat-treat 9001oads for the current and improved control strategy. 

Data Total New Total %Change 
I,oacl.s/year 956 1400 ~-46°0 

## of Days to Heat 
Treat 900 Loads 

344 235 -32% 

During the past few years, surges in natural gas prices have heightened interest in energy 

efficiency. The gas industry has seen prices double during that time as shown in Table 16, 

and the future is uncertain. Currently the price is around $7 per thousand cubic foot, but the 

price is highly variability from day to day. The improved control strategy would enable 

companies to deliver the energy for heat treatment more effectively thereby reducing 
. unnecessary gas consumption. 

Table 16 United States natural gas industrial average price21 (dollars per thousand cubic feet) listed for 
each month during 2001 to 2005. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2001 8.84 7.21 6.30 6.08 5.46. 4.75 4.10 3.99 3.50 3.18 3.88 3.69 

2002 4.05 3.70 3.78 3.64 4.07 3.86 3.80 3.62 3.89 4.18 4.72 4.92 

2003 5.65 6.40 8.27 5.96 5.78 6.59 5.69 5.28 5.32 4.93 5.19 5.90 

2004 6.76 6.56 6.01 6.09 6.37 6.86 6.44 6.38 5.70 6.05 7.66 7.57 

2005 6.97 7.07 7.04 7.62 7.09 6.84 7.34 7.90 10.09 11.88 11.92 10.90 

The potential yearly gas costs were found using the same assumptions mentioned 

previously and a cost estimate of $7 per thousand cubic feet and $10 per thousand cubic feet. 

The results are tabulated in Table 17. The yearly gas cost is shown for two scenarios: one 

where the furnace is operated at maximum production during the year and the other where an 

equal number of loads are processed. Even though the gas cost is higher at maximum 

production for New Total, 444 more loads were processed in the meantime. Additionally, it 

must be considered that this is the gas cost for one furnace. Generally, the costs and potential 

savings listed here would be multiplied by the number of furnaces that the particular 

company has. 
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'Table Y7 Potential savings total natural gas cost to heat load with improved control strategy for two gas 
0 ~r~ceso 

Data Total New Total Data Total New Total 
Gas Price ($/1000 cubic feet) $7 $7 S 10 $10 

Gas Cost/Load $56.38 $44.72 S80.54 $63.89 
Maximum 
Production 

Loads/Yeaa~ 956 1400 956 1400 
Gas Cost/I'ear $53,900 S62,600 $77,000 $89,400 

Equal 
Production 

# of Days to 
Beat Treat 900 

Loads 
344 235 344- 235 

Gas Cost/Year $50,700 $40,248 $72,500 $57,500 

5.4 Discussion on Ramp, Soak, and Hold 
Experiment A investigated the effect and extent that the position of the control 

thermocouple has on the temperature measured and the control ramp time. If ramp time is 

highly variable as this experiment demonstrated, then the industry must address the issue of 

whether longer or shorter control ramp times are more desirable. Shorter ramp times would 

be only beneficial for the current conservative practices because they have large safety 

factors assigned to soak time. The safety factor would compensate for the increased disparity 

in time between the control thermocouple and the load to reach their steady state. The 

shorter ramp times, however, would be detrimental to the improved control strategy because 

the control soak time would be lengthened significantly. 

On the other hand, longer ramp times would reflect load conditions more closely. This 

would be beneficial if the improved control strategy were used. Recent research suggests 

that longer control ramp time results in shorter control soak time22. The relationship between 

ramp time and soak time can be easily explained by the firing rate. Longer ramp times mean 

that the firing rate is operating at higher rates longer. The subsequent effect on soak time is 

that the firing rate will decrease more quickly to the equilibrium value. If this were used in 

conjunction with the improved control strategy, then heat-treat times could be reduced even 

further. 

Experiment B investigated the time delay for locations in the load to reach a percentage 

of the set point temperature. Measuring the soak time with thermocouples can not match the 

ability of the firing rate to ensure all locations in the load have reach steady state. One 

important piece of information that the firing rate does not provide is the load's temperature. 
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The data from Experiment B is very insightful In th1S aspect; 96% (167 out of 174) of the 

temperature readings reached at least 95°Io of the set point temperature. Only 45% (79 out of 

174) of the temperature readings reached the set point temperature. This suggests that when 

the firing rate indicates the end of soak, the temperature of the load can be reasonably 

estimated to be about 95% of the set point temperature. Once soak time is completed, then a 

quantitative method can be used to determine the length of hold time. The hold time is 

dependent on temperature, which can either be derived from the coldest equilibrium 

temperature in the load or 95 % of the set point temperature as shown by Experiment B . 

There are many unanswered questions about firing rate requiring additional investigation. 

They include how effective is firing rate in providing real time feedback on load conditions. 

For instance, will an isolated heavy section with relatively small mass when compared to the 

load reach its equilibrium temperature after firing rate indicates equilibrium is reached? How 

do different section sizes and loads with varying temperature uniformities respond in 

comparison to the firing rate? Additional research to find correlations between temperature 

uniformity, firing rate, and soak time plus validate the improved control strategy is needed. 
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6 Conclusions 
Batch heat treatments are variable processes in that the temperatures change with time 

and are spatially dependent. Time and temperature are critical to ensure a quality heat treat. 

Current control strategies employed by the steel casting industry are unable to optimize the 

requirements of the process. They are not specifically designed to address the variability 

issues caused by loading practices, load sizes, equipment design and maintenance, and 

material properties. To prevent degradation in quality, conservative standards for time and 

temperature are applied to all batches (hour-per-inch), which results In productivlty losses 

and inefficient energy usage. The industry would be better served to define a control strategy 

that measures how the load responds to the treatment (soak) and modify hold time 

accordingly. Deductions in process and energy use by 30% are expected if the industry can 

correctly identify the completion of soak. Identifying soak time indirectly through the 

controller output signal has been shown to be a viable option. 
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